Unit 2: Quantitative Analysis and Interpretation

Facilitators:

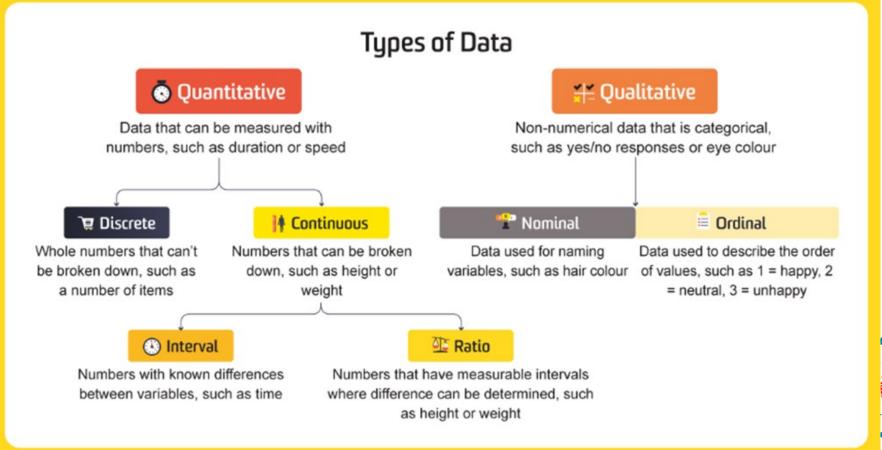
Unit outcomes

By the end of the unit, you should be able to:

- i) Appreciate the importance of correct data entry
- ii) Appreciate the importance of data cleaning
- iii) Carry out data quality checks
- iv) Analyze statistical data
- v) Interpret the outputs of the analysis

Types of data

- There are 2 main types of data quantitative and qualitative;
 which are further classified into 4 categories:
- i) Quantitative data discrete, continuous (interval, ratio)
- ii) Qualitative data nominal, ordinal


Types of data

- a) Interval scale has equal intervals between values means that data points along the scale are equal, so the difference between data points 1 and 2 will be the same as the difference between data points 5 and 6. It can be added to or subtracted from each other, but not multiplied or divided.
- b) Ratio scale the scale has a true zero point. Ratio variables never fall below zero. Measures such as weight and height examples of ratio scales.

Types of data....

- c) Nominal scale describes identity without any particular order e.g. gender, marital status, blood type, colour of hair
- **d) Ordinal scale** Ordinal scale data have a natural ordering. Examples of such data include:
- i) primary, secondary, higher
- ii) low, medium, high
- iii) Strongly disagree, disagree, neutral, agree, Strongly

Types of data....

Activity 1

Consider the *Teacher Questionnaire* data. Calculate the mean and standard deviation of the *Inquiry Based Learning* item. What can you conclude about the output?

Activity 2

• Importing data into a software (SPSS)

Methods of the data collection applied by CEMASTEA

- i. Focus group discussion
- ii. Interviews
- iii. Observations
- iv. Questionnaires
- v. Online survey

Analysis of data collected by CEMASTEA

Types of data	How analyzed
Quantitative Data	Descriptive statistics
	mean, median, mode, standard deviation, and range to summarize and describe the data
Qualitative data	Frequency/thematic Analysis (Thematic count) - Count the frequency of each category or response.
	CENIASTEA CENIASTEA

Strengths and areas of improvement

Strengths	Areas of improvement
	Data entry
	Data cleaning
	Inferential statistics CEMASTEA
	THE

Reflection

What would be the most suitable data analysis for the data collected by CEMASTEA?

ACTIVITY 3

• Data cleaning with sample data

Softwares that can be used for data analysis

- i) Examples of open source softwares for data analysis
- R, PSPP, JASP, MS Excel, etc
- ii) Examples of proprietary softwares for data analysis STATA, SPSS, Mathematica, S, etc

Parametric Analysis

Tests for normality

- Q-Q plots
- Box plots
- Kurtosis
- Skewness
- Shapiro-Wilk test
- Kolmogorov-Smirnov test
- Histogram

ACTIVITY 3

Using SPSS software, conduct the tests below on the Teacher Questionnaire data provided.

a) One-sample T-test

 This is a statistical test conducted on sample data to determine how different its mean is from a set standard score (specific value)

Hypothesis

 $H_0: \mathcal{L} = \text{specific value} \quad H_1: \mathcal{L} \neq \text{specific value}$

b) Independent T-test

 This is a statistical test used to compare means of two independent (unrelated) groups to determine whether there is any significant difference.

Hypothesis

$$H_0: \mathcal{U}_1 = \mathcal{U}_2 \quad H_1: \mathcal{U}_1 \neq \mathcal{U}_2$$

c) Paired sample t-test

 This is a statistical test which compares the means of two measurements taken from the same individual before and after an intervention or treatment has been administered (pre- and post- test scores)

d) One way ANOVA

 This is a statistical test used to compare means of more than two groups to determine whether there is any significant difference.

Hypothesis

$$H_0$$
: $V_1 = V_2 = V_3$ H_1 : $V_1 \neq V_2 \neq V_3$

e) Regression

Linear regressions

Non-parametric statistics

Chi-square test of independence

 This is a statistical test used to test for association between two or more groups for categorical data to determine their independence.

Hypothesis

• H_0 : No association H_1 : There is an association

